Фармакокинетика всасывание лекарственных веществ

8. Фармакокинетика

Проявление фармакологических эффектов лекарственных средств — это результат сложных процессов их взаимодействия с системами организма. С момента поступления лекарственного препарата в организм и до развития соответствующих фармакологических эффектов различают три последующих фазы или стадии.

1. Фармацевтическую — связанную с созданием лекарственных форм, наилучших с точки зрения максимального и более быстрого поступления активной субстанции во внутренние среды организма.

2. Фармакокинетическую — связанную с движением лекарственных веществ в организме, их метаболизмом и выведением.

3. Фармакодинамическую — собственно связанную уже с взаимодействием лекарственного вещества с биологическими структурами, обеспечивающими специфический фармакологический эффект.

Фармакокинетика — это раздел фармакологии, изучающий движение (кинетику) лекарственных веществ во внутренних средах организма.

Основные этапы фармокинетики:

Всасывание лекарственных веществ с места их введения в организм.

Распределение лекарственных веществ и их концентрация в тканях и органах, связывание их с белками крови и тканей.

Биотрансформация лекарственных веществ в организме или их метаболизм.

Элиминация и экскреция лекарственных веществ из организма, т. е. их обезвреживание и выведение.

8.1. Всасывание лекарственных веществ

Термином «всасывание» обозначают процесс поступления лекарственного вещества из места его введения в кровь. Всасывание или абсорбция лекарственных веществ зависит от многих факторов. Это, прежде всего путь введения, растворимость лекарственного вещества, характер лекарственной формы, интенсивность кровотока в месте введения и т. д. При внутрисосудистом введении лекарств (в вену, в артерию) говорить о всасывании не приходится, т. к. лекарство вводится прямо в кровь. Однако при любом пути введения лекарство должно проникнуть через ряд биологических мембран для того, чтобы достичь своего места действия. Биологические мембраны в организме достаточно многообразны. Однако, согласно мнению А. Альберта (1989), все мембраны можно разделить на четыре типа.

Мембраны первого типа встречаются наиболее часто. Они представляют собой двойной слой фосфолипидов, по обе стороны которого располагается по одному слою белковых молекул. Толщина такой мембраны примерно 5 нм. Через мембраны первого типа транспорт веществ осуществляется путем простой диффузии. Транспорт идет без затраты энергии, за счет разницы концентраций по обе стороны мембраны. Наиболее легко через такие мембраны диффундируют вещества, хорошо растворимые в жирах. На транспорт веществ через мембраны этого типа большое влияние оказывает степень ионизации вещества: чем выше степень ионизации, тем хуже идет транспорт. Степень диссоциации того или иного вещества определяется его константой диссоциации рКа. Она равна значению РН среды, при котором 50% молекул диссоциированы.

Мембраны второго типа отличаются от мембран первого наличием в них специальных переносчиков, обеспечивающих облегченную диффузию. Для переносчиков характерна высокая специфичность. Облегченная диффузия идет без затраты энергии. Таким путем проникают: холин, многие аминокислоты, пуриновые и пирамидиновые основания и некоторые другие соединения.

Мембраны третьего типа, наиболее сложные из всех, способны переносить вещества против градиента концентрации. Эта система транспорта требует затраты энергии. Эти мембраны осуществляют транспорт ионов К + и Na + в клетках млекопитающих. Такие мембраны осуществляют всасывание и выделение ионизированных и неионизированных веществ в почечных канальцах, с помощью таких мембран происходит накопление иода в щитовидной железе. Часто эти мембраны бывают вкраплены в мембраны первого типа.

Мембраны четвертого типа отличаются от таковых первого типа наличием пор, через которые могут фильтроваться определенные вещества. Такие мембраны имеются, например, в почечных клубочках. Размеры этих пор около 3 нм. Процесс фильтрации идет без затраты энергии.

Пиноцитоз. Особым видом транспорта через мембраны является пиноцитоз. При этом происходит инвагинация (втягивание) мембраны внутрь клетки, с последующим образованием пузырька (везикулы). Этот пузырек заполнен межклеточной жидкостью с находящимися в ней молекулами; веществ, в том числе и крупными. Пузырек мигрирует по цитоплазме до противоположной стенки клетки и аналогичным механизмом содержимое кутикулы выводится в межклеточное пространство. Иногда везикула под влиянием ферментов лизосом распадается, а крупные молекулы распадаются на свои субъединицы (моносахара, аминокислоты, жирные кислоты) и используются клеткой как источник энергии. Пиноцитоз протекает с затратой энергии.

Таким образом, все виды транспорта веществ, в том числе и лекарственных, через биологические мембраны можно разделить на два вида:

К пассивным видам транспорта веществ через биологические мембраны относятся:

Для этих видов транспорта характерно:

перемещение молекул вещества из области с относительно высокой концентрацией его в область с относительно малой концентрацией;

скорость транспорта пропорциональна градиенту концентраций по обе стороны мембраны;

транспорт прекращается, когда концентрации по обе стороны мембраны будут равны;

пассивный транспорт осуществляется без затраты энергии.

К активным видам транспорта относятся:

активный транспорт с участием белков переносчиков;

Активный транспорт обеспечивает, прежде всего, перенос через мембраны гидрофильных полярных молекул (глюкозы, аминокислот) и ряда ионов (натрия, калия, магния, кальция). Для краткости такие системы часто называют насосами, например калий-натриевый насос.

Для активных видов транспорта веществ через мембраны характерно:

возможность переноса веществ против градиента концентраций;

активные виды транспорта идут с затратой энергии, которая получается за счет метаболизма клетки.

Основным местом всасывания лекарств при приеме внутрь является слизистая оболочка тонкого кишечника. Основным механизмом всасывания в тонком кишечнике является диффузия. Фильтрация не имеет практически значения, а активный транспорт играет незначительную роль.

Все лекарственные вещества, принимаемые внутрь, подвергаются метаболизму в желудочно-кишечном тракте, а затем в печени. Этот вид метаболизма носит название пресистемный метаболизм, т. е. метаболизм до попадания веществ в системный кровоток.

Показателем, характеризующим процесс всасывания, является константа скорости всасывания Kвс или константа абсорбции Ка. Это величина постоянная для данного препарата при данном пути введения и показывает, какая часть или до­ля вещества всасывается в единицу времени: Величина эта имеет размерность, обратную времени, и выражается в часах или минутах в минус первой степени.

Читайте также:  Что делать если корова не очистилась после отела народные средства

Кинетика препарата в крови является одним из основных вопросов фармакокинетики, так как лекарственное действие во многих случаях зависит от концентрации препарата в кровь. Это, например, относится к химиотерапевтическим средствам. В этом случае даже можно установить минимальную терапевтическую концентрацию лекарства в крови.

Основными понятиями, характеризующими концентрацию лекарственного вещества в крови, являются:

Максимальная концентрация лекарственного препарата в крови — Смакс и выражается в мкг/мл или мг/л.

Время достижения максимальной концентрации лекарственного препарата в крови Тмакс — выражается в часах или минутах.

Время (период) полувыведения лекарственного препарата из крови. Эта величина обозначается как Т50% или Т1/2.

Этот показатель свидетельствует с снижении максимальной концентрации лекарственного препарата в крови на 50%. Период полувыведения у различных препаратов может быть весьма различен. Например: период полувыведения новокаина = 0,1 часа, норсульфазола = 4 часам, карбамазепина = 12 — 20 часам, сульфодиметоксина = 20 — 48 часам. Всосавшись в кровь, лекарственное вещество частично находится в свободном состоянии, а частично связывается с белками, главным образом с альбуминами крови. Часть препарата, связавшаяся с белками крови, как правило, теряет свою биологическую активность. Поэтому действие лекарственных препаратов чаще всего коррелирует не с общим количеством препарата в крови, а с количеством свободного препарата. Это особенно четко проявляется для препаратов, хорошо связывающихся с белками крови. Например, хинидин связывается с белками крови на 70—80% и для него отмечена четкая зависимость между уровнем свободного препарата крови и его влиянием на электрокардиограмму. Однако для слабо связывающихся с белками лекарственных препаратов (например, новокаин, связывающийся на 15% или дигоксин — на 10%) интенсивность эффекта удовлетворительно коррелирует с общим количеством препарата. Связывание лекарств с белками крови является обратимым процессом и когда, свободная часть лекарства экскретируется, метаболизируется или захватывается тканями, то происходит диссоциация комплекса белок — лекарство и концентрация свободного препарата в крови возрастает. Обычно концентрации лекарств, которые возникают в крови при применении терапевтических доз, не вызывают насыщения белков крови. Однако такая ситуация может возникнуть при применении очень больших доз, например, при введении пенициллина десятками миллионов ЕД. Для некоторых препаратов предел насыщения белков крови может быть достаточно низок, например, вальпроевая кислота может дать насыщение белков крови при терапевтических дозах. Насыщение белков крови представляет серьезную опасность, так как при наступлении насыщения белков крови следующая доза препарата вызовет резкое повышение концентрации свободного препарата в крови, что может вызвать побочные и токсические явления.

Существуют некоторые различия связывания лекарств с белками крови в связи с видовыми, индивидуальными и возрастными различиями.

Связывание лекарственных препаратов с белками крови имеет большое значение для фармакотерапии:

1. Комплекс белок — лекарственный препарат — это депо, откуда пополняется уровень свободного препарата в крови.

2. Комплекс белок — лекарство не выводится почками путем фильтрации. Лекарственные вещества, хорошо связывающиеся с белками, более длительное время находятся в крови.

3. Связывание лекарственных препаратов с белками необходимо учитывать при комбинированной терапии. Это особенно важно, когда комбинируемые препараты имеют одни и те же места связывания в молекулах белка. В этом случае возможно вытеснение одного лекарственного препарата другим. Например, бутадион при совместном применении с антикоагулянтами непрямого действия способен вытеснять антикоагулянты из связи с белками, приводя к резкому повышению свободной фракции этих препаратов в крови, что может вызвать резкое понижение свертываемости крови. Антикоагулянты в свою очередь могут вытеснять из связи с белками крови сульфаниламиды, повышая при этом их антимикробное действие и токсичность. Одновременное назначение антимикробных и антидиабетических сульфаниламидов может привести к вытеснению из связи с белками антидиабетических сульфаниламидов и вызвать гипогликемию.

Источник

Фармакокинетика лекарственных средств!

Фармакокинетика лекарственных средств.

Фармакокинетика – это раздел фармакологии, изучающий судьбу лекарственных средств в организме, то есть всасывание, распределение по органам и тканям, метаболизм и выведение. То есть, путь лекарственного вещества в организме от момента введения до выведения из организма.

Существуют разные пути введения лекарственного средства в организм. Их можно разделить на 2 большие группы: энтеральный (через желудочно-кишечный тракт), парентеральный (минуя желудочно-кишечный тракт). К энтеральным путям введения относят: пероральный (per os – через рот), сублингвальный (под язык), через зонд в желудок и двенадцатиперстную кишку, ректальный (через прямую кишку). К парентеральным путям введения относятся: накожный, внутрикожный, подкожный, внутримышечный, внутривенный, внутриартериальный, внутрисердечный, под оболочки мозга, ингаляционный, интрастернальный (в грудину). Каждый из путей введения имеет свои преимущества и недостатки.

Самый распространенный путь введения – это через рот (пероральный). Этот путь удобный, простой, не требуется стерильность препаратов. Всасывание лекарственного вещества идет частично в желудке, частично в кишечнике. Однако некоторые лекарственные вещества могут разрушаться под действием желудочного сока. В этом случае лекарственное вещество помещают в капсулы, которые не разрушаются желудочным соком. Под языком лекарственное средство всасывается быстро, минует печень и не вступает в контакт с содержимым желудка и кишечника (Нитроглицерин). При ректальном способе введения (суппозитории, клизмы) лекарственное вещество быстро всасывается, частично минуя печень. Однако, далеко не все препараты хорошо всасываются из слизистой прямой кишки, а некоторые препараты могут раздражать слизистые оболочки.

Из парентеральных путей введения чаще используют: под кожу, внутримышечный, внутривенный. Быстрый эффект наступает при внутривенном пути введения. Однако к трудностям парентеральных способов введения относят: болезненность укола, стерильность препаратов и шприцов, необходимость медицинского персонала для проведения инъекций.

Читайте также:  Школа первой помощи бубнов

Поступив в организм, лекарственное вещество должно всосаться. Всасывание (абсорбция) – это процесс поступления лекарственного вещества в кровеносную или лимфатическую систему из места введения. Основные механизмы всасывания: пассивная диффузия, облегченная диффузия, активный транспорт, пиноцитоз. Факторы, влияющие на всасывание лекарственного вещества при приеме внутрь: растворимость, лекарственная форма, pH желудка и кишечника, активность ферментов желудочно-кишечного тракта, перистальтика желудочно-кишечного тракта, прием пищи, мальабсорбция, дисбактериоз.

После всасывания лекарственного вещества в кровь оно будет циркулировать там, в «свободной» или «связанной» форме. «Свободная» форма (не связана с белками крови) растворима в водной фазе плазмы крови. Эта форма легко проникает через стенку капилляров в ткани и оказывает фармакологический эффект. «Связанная» форма – это часть лекарственного вещества, которая связана с белками крови (чаще с альбуминами) и неспособна, проникать в ткани. Эта форма представляет собой как бы депо препарата и по мере выведения лекарственного вещества из организма отщепляется от белка и переходит в «свободную» форму. Следовательно: только «свободная» форма лекарственного вещества оказывает фармакологический эффект.

После всасывания в кровь лекарственное вещество подвергается распределению по органам и тканям. Распределение по органам и тканям чаще всего бывает неравномерным. Степень поступления в ту или иную ткань зависит от разных факторов: от молекулярной массы, от растворимости в воде и липидах, от степени диссоциации; от возраста, пола; от массы жировых депо; от функционального состояния печени, почек, сердца; от способности преодолевать гистогематические барьеры.

К гистогематическим барьерам относят: капиллярную стенку, гематоэнцефалический барьер, гематоофтальмический барьер, плацентарный барьер. Капилляры легко проницаемы для лекарственных веществ, так как стенка капилляров имеет широкие поры, через которые легко проходят водорастворимые вещества с молекулярной массой не больше инсулина (5 – 6 кДа). А жирорастворимые вещества диффундируют через мембрану клеток.

Гематоэнцефалический барьер – представляет собой капиллярную стенку, которая является многослойной мембраной (эндотелий, межуточное вещество и глиальные клетки головного и спинного мозга). Такая мембрана лишена пор. Через гематоэнцефалический барьер легко проникают липофильные вещества путем простой диффузии (например, тиопентал натрия – наркозное средство). Для полярных соединений (пенициллины, миорелаксанты) гематоэнцефалический барьер не проницаем. Гематоэнцефалический барьер гипоталамуса, гипофиза отличается повышенной проницаемостью для лекарственных веществ. Проницаемость гематоэнцефалического барьера повышается при менингите, арахноидите, гипоксии, черепно-мозговых травмах. Некоторые лекарственные препараты (кофеин, эуфиллин, лидаза) повышают проницаемость гематоэнцефалического барьера.

Гематоофтальмический барьер отделяет кровь капилляров от внутриглазной жидкости в камерах глаза. В камеры глаза хорошо проходят липофильные препараты.

Плацентарный барьер разделяет кровообращение матери и плода. На ранних стадиях беременности наблюдается большая порозность этого барьера и многие лекарства легко проникают в плод. Затем этот барьер «укрепляется» и приобретает свойства липидной мембраны. Но с 33 – 35-й недели беременности истончается плацента и значительно повышается проницаемость плацентарного барьера. Это создает опасную ситуацию для плода. Не проникают через плацентарный барьер крупномолекулярные вещества (инсулин, полиглюкин), а также гидрофильные ионизированные молекулы: миорелаксанты, ганглиблокаторы.

Следующий этап фармакокинетики – это элиминация лекарственного вещества. Элиминация (от латинского eliminatum – удалять) – удаление лекарств из организма путем биотрансформации и экскреции.

Биотрансформация – это метаболическое превращение лекарств, в результате которых они приобретают полярные группы, то есть уменьшается растворимость в липидах и возрастает растворимость в воде. Полярные метаболиты пригодны к удалению из организма. Для примера хочу сказать, что если бы не было метаболизма, то одна терапевтическая доза снотворного средства этаминала могла бы находиться в организме 100 лет. Биотрансформация лекарств чаще всего (90 – 95%) происходит в печени, реже в слизистой оболочке кишечника, почках, легких, коже, в крови. Наиболее изучен метаболизм лекарств в печени. Метаболизм в печени происходит: либо в эндоплазматическом ретикулуме гепатоцитов с помощью микросомальных оксидаз смешанной функции либо вне эндоплазматического ретикулума (в митохондриях) с помощью немикросомальных ферментов.

Можно выделить 2 фазы биотрансформации. Первая фаза включает 3 реакции:

В процессе этих реакций молекулы субстрата приобретают полярные группы (гидроксильные, аминные и другие), в результате чего метаболиты лекарственных веществ становятся водорастворимыми и пригодными для выведения. Приведу несколько примеров биотрансформации лекарств. Окислению подвергаются: алкоголь, фенобарбитал, морфин, эфедрин, хлорпромазин. Восстановлению подвергаются: пропранолол, хлорамфеникол, нитрофураны. Гидролизируют следующие лекарства: прокаин, новокаинамид, сердечные гликозиды.

Вторая фаза биотрансформации включает реакции конъюгации, (то есть соединения, синтеза). Лекарственное вещество или метаболиты первой фазы связываются с некоторыми эндогенными веществами и образуют различные конъюгаты (соединения) с глюкуроновой кислотой (глюкоронизирование), уксусной кислотой (реакция ацетилирование), сульфатом, глицином, глутатионом, реакция метилирования по кислороду, азоту, сере. Иногда бывает так, то у одного и того же вещества наблюдается несколько этапов конъюгации: вначале (например) с глицином, потом – с глюкуроновой кислотой и так далее. В результате реакций конъюгации образуются водорастворимые вещества, которые быстро выводятся из организма. Примеры типовых реакций конъюгации: ацетилирование (сульфаниламиды, фтивазид, анестезин, прокаин), глюкуронизация (пропранолол, морфин, левомицетин), связывание с сульфатом (метилдофа, фенол), связывание с аминокислотами, с глицином (салициловая кислота, никотиновая кислота), метилирование: по кислороду (дофамин), по азоту (никотинамид), по сере (унитиол).

В результате биотрансформации лекарственные вещества меняют свою биологическую активность. Могут быть следующие варианты изменения их активности: потеря активности (инактивация) – наиболее частый вид, активация – это повышение активности. Например: фталазол после гидролиза превращается в активное вещество – норсульфазол; уротропин превращается в организме в активный формальдегид, витамин Д гидроксилируется в активный диоксивитамин «Д». Модификация основного эффекта, когда в процессе биотрансформации появляются другие свойства. Например, кодеин в организме частично деметилируется и превращается в морфин.

В процессе метаболизма под влиянием лекарственных средств может происходить индукция (усиление) или ингибирование (торможение) активности микросомальных ферментов печени. К препаратам-индукторам относят: фенобарбитал и другие барбитураты, зиксорин, рифампицин, димедрол, бутадион, стероидные гормоны, верошпирон и другие. При курсовом назначении этих препаратов-индукторов их метаболизм ускоряется в 3 – 4 раза К препаратам-ингибиторам метаболизма относят: эритромицин, левомицетин.

Читайте также:  Лечебные санатории краснодарского края море

Следующий этап фармакокинетики – это выведение (экскреция) лекарственных веществ из организма. Это заключительный этап фармакокинетики. Лекарственные вещества и их метаболиты экскретируются разными путями: почками (чаще всего), через желудочно-кишечный тракт, легкими, кожей, железами (слюнными, потовыми, слезными, молочными).

Механизмы выведения почками: клубочковая фильтрация (пассивный процесс), канальцевая секреция (активный процесс), канальцевая реабсорбция (пассивный процесс). Клубочковой фильтрации подвергаются водорастворимые вещества с молекулярной массой до 5000 дальтон. Они не должны быть связаны с белками плазмы крови. Пример фильтрации – стрептомицин. Канальцевая секреция лекарственных веществ и метаболитов происходит против градиента концентрации с затратой энергии. Могут секретироваться вещества, связанные с белками. Пример секреции: бензилпенициллин (85%). Канальцевая реабсорбция происходит в дистальных отделах канальцев путем пассивной диффузии по градиенту концентрации. Благодаря реабсорбции пролонгируется (удлиняется) действие препарата (фенобарбитал, димедрол, диазепам).

Экскреция с желчью. Многие полярные лекарственные средства, имеющие молекулярную массу 300 и выше, могут выводиться с желчью через мембрану гепатоцитов, а также путем активного транспорта с помощью фермента глютатионтрансферазы. Степень связывания с белками плазмы крови значения не имеет. Неполярные лекарственные средства не экскретируются в желчь, но их полярные метаболиты довольно быстро попадают в желчь. Вместе с желчью лекарственные вещества попадают в кишечник и выделяются с калом. Некоторые препараты могут подвергаться в кишечнике деконъюгации с помощью кишечной микрофлоры. В этом случае эти препараты могут повторно всасываться (например, дигитоксин). Это явление называется энтерогепатическая (печеночно-кишечная) циркуляция.

Экскреция легкими. Некоторые лекарственные вещества могут выделяться частично или полностью через легкие. Это — летучие и газообразные вещества (например, средства для наркоза), этиловый спирт, камфора и другие.

Экскреция грудными железами. Некоторые препараты могут легко проникать в грудные железы и экскретироваться с молоком матери. В молоко легко проникают препараты, хорошо связывающиеся с жиром: теофиллин, левомицетин, сульфаниламиды, ацетилсалициловая кислота, препараты лития. Возможны токсические эффекты проникающих в грудное молоко лекарственных средств на грудного младенца. Особенно опасны: противоопухолевые препараты, препараты лития, изониазид, левомицетин; препараты, вызывающие аллергию (бензилпенициллин).

Экскреция со слюной. Некоторые препараты могут попасть в слюну путем пассивной диффузии. Чем более липофильный препарат, тем легче он проникает в слюну. Если концентрация препарата в слюне корригирует с концентрацией его в плазме крови, то в этих случаях легко определять концентрацию препарата в слюне. Например, антипирин, пармидин. Частично выделяются со слюной: парацетамол, лидокаин, литий, фенацетин, хинидин, теофиллин, пармидин, антипирин, клофелин.

Элиминация – суммарная величина биотрансформации + экскреции. В результате элиминации лекарственное вещество теряет активность (метаболизирует) и выводится из организма.

Квота-элиминация (или коэффициент элиминации) – это суточная потеря препарата, выраженная в процентах к препарату, содержащегося в организме. Квота-элиминация: строфантина 50%, дигитоксина 7%. Эта величина важна для режима дозирования.

Период полувыведения (полужизни, полуэлиминации) – это время, за которое концентрация препарата в плазме крови снижается наполовину (50%). Обозначается: Т½ в часах и минутах. Чем больше Т½, тем медленнее выводится препарат и его реже надо вводить в организм во избежаний побочных явлений. Эта величина зависит от: пути введения препарата, дозы, возраста; функции печени, почек.

Клиренс – это количественная оценка скорости экскреции лекарственных веществ. Почечный клиренс равен объему плазмы крови, который полностью очищается (освобождается) от лекарственного вещества за единицу времени (л/мин, мл/мин).

Общий клиренс – это объем плазмы крови, из которого за единицу времени выводится лекарственное вещество с мочой, желчью, легкими и другими путями. Это суммарная величина.

Важным параметром фармакокинетики является биодоступность лекарственного вещества – это доля введенной внутрь дозы вещества, которая поступает в общий кровоток в активной форме (в процентах). Биодоступность зависит от: полноты всасывания лекарственного вещества, степени инактивации в желудочно-кишечном тракте, интенсивности метаболизма при первичном прохождении через печень.

Вам надо знать 2 термина: первичное прохождение через печень лекарственного вещества, вторичное поступление в печень. «Первичное прохождение лекарственного вещества через печень» (или «метаболизм первого прохождения») применим для лекарственных препаратов, которые всасываются в желудке и тонком кишечнике, так как из этих органов лекарственное вещество попадает в воротную вену (venae portae), а далее – в печень и только потом поступает в общий кровоток и разносится по органам и тканям. А оттуда лекарственное вещество вновь поступает в печень, где происходит окончательный метаболизм лекарственного вещества, то есть вторичное поступление в печень.

Таким образом, только при приеме лекарственного средства per os, оно дважды поступает в печень. при первом прохождении через печень может начаться метаболизм лекарственного вещества. Кроме того, некоторые лекарственные вещества начинают метаболизировать уже в желудке и кишечнике. весь комплекс процессов, приводящих к инактивации лекарственного вещества до его попадания в общий кровоток называется «пресистемной элиминацией». Биодоступность выражается в процентах. Если лекарственное вещество вводить внутривенно, то биодоступность будет почти всегда 100%. «Объем распределения» (Vd) – это параметр фармакокинетики, который характеризует степень захвата вещества тканями из плазмы крови (л/кг). Эту величину можно использовать для оценки характера распределения препарата в организме, то есть где больше накапливается вещество: в клетке или в межклеточной жидкости. Если объем распределения низкий (менее 1 – 2 л/кг), то большая часть препарата находится в межклеточной жидкости и наоборот. Знание величины Vd пригодится для оказания помощи при передозировке препарата.

Источник

Оцените статью